therefore suggest that the lengthening of the C(1)-C(7)bond is caused by this rotation, which has decreased the overlap between the two p_z orbitals and therefore decreased the double-bond character of the bond.

The molecule is distorted from planarity by an unusual amount. Omitting the 'outside' atoms of the isobutyl group, C(10), C(11), C(12), the distortion of one half of the molecule from complete planarity may be approximately described by a rotation of the (nearly) planar group C(1), C(7), C(8), N, C(9), Cu through an angle of 25° about the line C(1)-C(9). Equations for various least-squares planes and the distances of the several atoms from these planes are given in Table 4. Comparison of these distances with those found in other compounds shows a number of differences. The metal atom is farther (1.12 Å) out of the plane defined by the benzene ring, the farthest heretofore reported being 0.75 Å in bis-(N-t-butylsalicylaldiminato)palladium(II) (Day, Glick & Hoard, 1968). The nitrogen atom is also farther (0.25 Å) out of the plane and is out in the same direction as the metal, whereas in other compounds it is out in the opposite direction from the metal atom (cf. Table 6, Jain & Lingafelter, 1967). The dihedral angle between the coordination plane CuN_2O_2 and the mean plane of the o-hydroxyacetophenone imine residue is 136.6°, which may be compared with the corresponding angle of 144.4° in bis-(N-t-butylsalicylaldiminato)palladium.

The packing of the molecules may be seen in Fig. 2. None of the intermolecular contact distances is unusual.

This investigation was supported by the U.S. National Science Foundation under Grant GP-9201.

References

- ALEXANDER, L. E. & SMITH, G. S. (1964). Acta Cryst. 17, 1195.
- CROMER, D. & WABER, J. (1965). Acta Cryst. 18, 104.
- DAY, V. W., GLICK, M. D. & HOARD, J. L. (1968). J. Amer. Chem. Soc. 90, 4803.
- HALL, D., SHEAT, S. V. & WATERS, T. N. (1968). J. Chem. Soc. A 1968, 460.
- JAIN, P. C. & LINGAFELTER, E. C. (1967). Acta Cryst. 23, 127.
- LINGAFELTER, E. C. & BRAUN, R. L. (1966). J. Amer. Chem. Soc. 88, 2951.
- LINGAFELTER, E. C., SIMMONS, G. L., MOROSIN, B., SCHER-INGER, C. & FREIBURG, C. (1961). Acta Cryst. 14, 1222.
- STEWART, J. M. (1964). Crystal Structure Calculation System for the IBM 709, 7090, 7094. Technical Report TR-64-6, Computer Science Center, Univ. of Maryland and Research Computer Laboratory, Univ. of Washington.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- WATERS, T. N. & HALL, D. (1959). J. Chem. Soc. p. 1200.
- WEI, L., STOGSDILL, R. M. & LINGAFELTER, E. C. (1964). Acta Cryst. 17, 1058.

Acta Cryst. (1970). B26, 1812

The Crystal Structure of Compounds with (N-P)_n Rings. VII.* Refinement of the Crystal Structure of Hexabromocyclotriphosphazene, N₃P₃Br₆

By H. ZOER AND A. J. WAGNER

Laboratory of Structural Chemistry, The University, Bloemsingel 10, Groningen, The Netherlands

(Received 4 August 1969)

The crystal structure of N₃P₃Br₆, as determined by Giglio & Puliti (1967), has been refined from threedimensional intensity data, collected with Mo radiation on an automatic three-circle diffractometer. Two crystals were used. Data processing and refinement were carried out independently with the data obtained from each crystal. The intensities were corrected for absorption and during the refinement a correction for extinction was applied according to Zachariasen (1967, 1968). Atomic coordinates obtained from the two crystals agree within the standard deviations. The molecules N₃P₃Br₆ lie on crystallographic mirror planes of the space group *Pnma*, with unit-cell dimensions a=14.463 (0.002), b=13.410 (0.003) and c=6.601 (0.001) Å. There are four short intermolecular Br \cdots Br distances (3.65-3.85 Å) and a short N \cdots Br distance (3.24 Å). The two independent angles P–N–P of a molecule are significantly different: 119·3 (0.6) and 122·4 (0.5)°. Other chemically equivalent bond lengths and angles are equal within experimental error. Mean values (and individual standard deviations) are P–N 1.576 (0.008), P–Br 2.162 (0.004) Å, N–P–N 118·5 (0.5) and Br–P–Br 102·1 (0·1)°. The (N–P)₃ ring is non-planar and slightly chair-shaped. The dihedral angles of the ring bonds are -6.7, 6·3 and -5.5° and the largest distance from a ring atom to the least-squares plane through the ring is 0.047 Å.

Introduction

The crystal structures of several chloro- and fluorocyclophosphazenes are known with some precision, viz. $N_3P_3Cl_6$ (Wilson & Carroll, 1960), $N_4P_4Cl_8$ [two crystal modifications, K form (Hazekamp, Migchelsen & Vos, 1962) and T form (Wagner & Vos, 1968)], $N_5P_5Cl_{10}$ (Schlueter & Jacobson, 1968), $N_3P_3F_6$ (Dougill, 1963) and $N_4P_4F_8$ (McGeachin & Tromans, 1961).

^{*} Part VI: Olthof (1969).

As to the bromo compounds the only crystal structure known is that of the trimer $N_3P_3Br_6$. This structure was determined by Giglio & Puliti (1967) from the intensities of 538 X-ray reflexions, estimated visually on Weissenberg films. The accuracy of the results is not high, *e.g.* the values found for the P–Br bond lengths range from 2.14 to 2.20 Å with an individual standard deviation of 0.015 Å.

We intend to investigate the crystal structures of the homologous bromocyclophosphazenes in order to elucidate the conformations of the phosphazene rings. Refinement of the crystal structure of the trimer $N_3P_3Br_6$, from new experimental data, seemed necessary, if reliable comparisons with the structures of related compounds are to be made.

Since absorption effects of X-rays in crystals of the bromocyclophosphazenes will be very substantial (linear absorption coefficient for Mo radiation more than 200 cm⁻¹), we thought it worth while to use two independent sets of intensities, obtained from two different crystals, for the refinement of the crystal structure of $N_3P_3Br_6$, in order to see whether the determined atomic coordinates would be essentially the same.

The results of the refinement of $N_3P_3Br_6$ are given in the present paper. The crystal structure of the tetramer $N_4P_4Br_8$, which has been determined by us, will be described in a following paper.

Experimental

The substance was prepared from phosphorus(III) bromide, ammonium bromide and bromine according to the procedure of Coxon, Sowerby & Tranter (1965). From the reaction mixture, containing trimeric and tetrameric bromocyclophosphazene and possibly higher homologues, suitable crystals of $N_3P_3Br_6$ were obtained by fractional crystallization from petroleum.

The crystals are orthorhombic. Weissenberg photographs showed the systematic absences 0kl for k+l=2n+1 and hk0 for h=2n+1. The space group therefore is *Pnma* (no. 62) or *Pn2*₁*a* (no. 33). The unit cell contains four molecules N₃P₃Br₆. In the refinement it was assumed that *Pnma* is the correct space group, implying that the molecules have a crystallographic mirror plane. Accurate unit-cell dimensions were determined from zero-level Weissenberg photographs around the b and c axes. Reflexions from a NaCl crystal were superposed on the films for calibration. The lengths of the unit-cell edges are:

Present work	Giglio & Puliti (1967)
a = 14.463, s.d. 0.002	Å 14·43, s.d. 0·02 Å
b = 13.410 0.003	13.36 0.02
c = 6.601 0.001	6.63 0.01

Intensities were measured at room temperature on a single-crystal three-circle automatic Nonius diffractometer by the θ -2 θ scan method. All 1176 independent reflexions up to sin $\theta/\lambda = 0.60$ Å⁻¹ were measured using Zr filtered Mo radiation. The intensities of all reflexions were measured twice; two different crystals (I and II) of approximate dimensions $0.1 \times 0.1 \times 0.2$ mm and $0.2 \times 0.2 \times 0.3$ mm respectively were used. Crystal I gave 995 non-zero reflexions and crystal II 1004. The data for each crystal were processed separately and the refinement was carried out with each series of F_{θ} values independently.

The intensities were corrected for Lorentz and polarization effects and for absorption. The latter corrections were calculated with a computer program based on the Busing & Levy (1957) scheme. The linear absorption coefficient for Mo radiation is very high, *viz.* 203 cm⁻¹. The transmission factor (1/V) $\int \exp(-\mu d) dV$ ranged from 0.10 to 0.14 for I and from 0.02 to 0.06 for II. After the absorption correction the F_o values of the two crystals were compared. After scaling the factor $R' = \sum ||F_{II}| - |F_{II}|| / \sum |F_{I}|$ was 10.6% for the 899 common reflexions. For the stronger reflexions the scaled F_o values of II were generally smaller than those of I. As will be seen later this behaviour can only partly be ascribed to extinction effects.

Refinement

Least-squares refinements were carried out based on the F_o values of each crystal separately. A leastsquares program working according to the blockdiagonal approximation (Cruickshank, 1961) was used. The atomic coordinates and thermal parameters from the paper by Giglio & Puliti (1967) were taken as a

Table 1. Final	fractional	coordinates
----------------	------------	-------------

Standard deviations are in parentheses.

		Crystal I			Crystal II	
	x	У	z	x	У	Z
N(1)	0.1430 (10)	0.25	0.5967 (30)	0.1434 (11)	0.25	0.5940 (29)
N(2)	-0.0077(7)	0.1499 (8)	0.4566 (19)	-0.0081 (8)	0.1507 (9)	0.4528(24)
P(1)	-0.0605(3)	0.25	0.4121 (9)	-0.0607(4)	0.25	0.4117 (9)
P(2)	0.0907 (2)	0.1477 (3)	0.5556 (6)	0·0910 (3)	0.1480(3)	0.5554(6)
Br(1)	-0.1895(2)	0.25	0.5783 (4)	-0.1895(2)	0.25	0.5789 (4)
Br(2)	-0.1078(2)	0.25	0.1015 (4)	-0.1078(2)	0.25	0.1019 (4)
Br(3)	0.0823(1)	0.0714 (1)	0.8445 (3)	0·0824 (1)	0.0713(1)	0.8442(3)
Br(4)	0.1806 (1)	0.0507 (1)	0·3845 (3)	0·1806 (1)	0.0505 (1)	0.3844(3)

starting point. Atomic scattering factors were taken from Doyle & Turner (1968).

In the initial cycles the scale factor, the atomic coordinates and anisotropic thermal parameters were refined without accounting for anomalous scattering effects and with uniform weights. Later the anomalous scattering by phosphorus and bromine (International Tables for X-ray Crystallography, 1962) was incorporated and a weighting scheme of the form w = $\{w_c^{-1}+p|F_o|^2\}^{-1}$ was introduced. The term w_c is the weight from counting statistics and p is a constant, chosen so as to make $(\Delta F)^2$, averaged over groups of reflexions, as far as possible independent on $|F_0|$. The value 4×10^{-4} was given to p for crystal I and 9×10^{-4} for II. Furthermore, the extinction parameter p_{ex} was refined according to Zachariasen's (1967, 1968) method. This parameter occurs in the function M, which is to be minimized, as follows:

$$M = \sum w[|F_o| - K|F_c| \{1 + C(\theta)p_{\text{ex}}|F_c|^2\}^{-1/4}]^2$$

with $C(\theta) = 10^{-2} (p_2/p_1) (1/\sin 2\theta) \bar{T}$
and $p_{\text{ex}} = 2 \times 10^2 (e^2/mc^2)^2 (\lambda^2/V^2) r^*$

(See Zachariasen (1968) for the meaning of the symbols.)

At the end of the refinement the indices $R = \{\sum |\Delta F|^2 / \sum |F_o|^2\}^{1/2}$ and $R_w = \{\sum w |\Delta F|^2 / \sum w |F_o|^2\}^{1/2}$ were 9.6 and 6.5% for crystal I and 9.4 and 8.0% for II. The theoretical values for R and R_w based on counting statistics are lower, viz. 8.5 and 4.2% for I, and 7.6 and 5.2% for II. The differences between F_o and F_c are thus larger than could be expected on the basis of counting statistics alone, indicating that there are additional errors in the F_o values. Presumably these errors are mainly due to the difficulties encountered in calculating the absorption corrections. The refined

value of p_{ex} is 0.005 for I and 0.014 for II. With these numbers the extinction corrections $y^{1/2} = \{1 + C(\theta)p_{ex}|F_c|^2\}^{-1/4}$ are calculated as about 0.95 and 0.85 for the strong reflexions of I and II respectively. It thus appeared that the extinction effects are rather small in both crystals, though somewhat larger in the bigger one.

The last four cycles of the least-squares refinement were also run without applying extinction corrections. It appeared that this brought about only slight changes in the atomic coordinates, in no case larger than the standard deviations. Furthermore, neglect of the extinction corrections caused only moderate changes in the thermal parameters, the scale factor, the standard deviations and the indices R and R_w . The sense of these changes is as expected: compared with the refinement with extinction corrections the thermal parameters and scale factor decreased, the standard deviations in all parameters increased and R increased (1% for I and 4% for II). The change in R_w was less than 1%.

Results and discussion

The final coordinates with their standard deviations calculated by the least-squares program are given in Table 1. It is seen that corresponding coordinates, determined from crystal I and crystal II, are in most cases equal within the standard deviations. The anisotropic temperature factor parameters and their standard deviations are given in Table 2. Here again corresponding values obtained for the two crystals agree within experimental error, indicating that the two sets of F_o values (after correction for extinction) do not show significant differences in their variation with $\sin \theta/\lambda$. Observed and calculated structure factors are compared in Table 3. In this Table the extinction correction is applied to the observed amplitudes F_o .

Table 2. Parameters (Å²×10⁻⁴) of the anisotropic temperature factors $\exp \left[-2\pi^2 (h^2 a^{*2} U_{11} + \ldots + 2hka^* b^* U_{12} + \ldots)\right]$

Standard deviations are in parentheses.

			Crystal I			
	U_{11}	U_{22}	U ₃₃	$2U_{12}$	$2U_{23}$	$2U_{13}$
N(1)	257 (94)	345 (99)	929 (160)	0	0	- 526 (217)
N(2)	349 (65)	262 (64)	652 (90)	-84 (110)	107 (132)	-262(131)
P(1)	222 (27)	386 (31)	439 (34)	0	0 `	- 98 (54)
P(2)	268 (19)	290 (20)	496 (25)	64 (34)	1 (38)	-61(36)
Br(1)	375 (12)	615 (15)	620 (16)	0	0	233 (26)
Br(2)	555 (15)	752 (17)	441 (14)	0	0	- 224 (26)
Br(3)	669 (12)	655 (11)	519 (10)	-6 (19)	274 (19)	9 (19)
Br(4)	509 (9)	514 (9)	702 (12)	197 (17)	-216 (20)	271 (19)
			Crystal II	[
N(1)	205 (88)	409 (101)	610 (130)	0	0	- 439 (184)
N(2)	326 (70)	337 (72)	952 (121)	-88(123)	-168 (165)	- 234 (156)
P(Ì)	201 (26)	389 (30)	458 (34)	0`´	0` ´	-131 (52)
P(2)	274 (19)	278 (19)	462 (23)	48 (35)	18 (38)	- 79 (35)
Br(1)	381 (13)	592 (15)	608 (16)	0	0	208 (25)
Br(2)	587 (16)	755 (18)	408 (14)	0	0	-155(25)
Br(3)	692 (12)	629 (11)	526 (10)	9 (20)	289 (20)	38 (19)
Br(4)	506 (10)	513 (10)	728 (12)	230 (17)	- 196 (21)	238 (19)

is given in Fig. 1. The $(N-P)_3$ rings of the molecules A and C lie approximately at height z=0.5, and those corresponds to that used in the Tables. Fig. 2 shows a

A projection of the crystal structure along the c axis of the molecules B and D approximately at height z=0. The numbering of the atoms in molecule A

Crystal I

L FO FL AC	80 M K.	- FO FC AC	вс н к.	. FC FC	AC 6C	 10 FC	. AC 84	 +0 +0	C AC	вс н	K L	F0 FC	A C	ьC
		1 2.7.9 4.3.9 2.9.9 1 1.7.9 4.3.9 2.9.9 1 1.1.9 1.9.9 3.9.9 1 1.1.9 1.9.9 3.9.9 1 1.2.4.4 3.2.9 2.3.1.5 1 2.2.4.4 3.2.9 2.3.1.5 1 2.2.4.0 2.2.9 2.2.1 1 2.2.4.0 2.2.9 -2.2.1 1 2.2.4.0 2.2.9 -2.2.1 1 2.9.7 3.2.2 -3.9.8 1 2.9.7 3.2.2 -3.9.8 1 2.9.7 3.2.2 -3.9.8 1 2.9.7 3.2.2 -3.9.8 1 2.9.7 3.2.2 -3.9.8 1 2.9.7 3.2.2 -3.9.8 1 2.9.7 3.2.2 -3.9.8 1 2.9.7 3.2.2 -3.9.8 1 2.9.7 3.2.2 -2.9.1 1 2.9.7 3.9.3 3.2.2 </td <td></td> <td></td> <td></td> <td>257 (2000) 257 (2</td> <td></td> <td>2011 13 13 13 13 13 13 13 13 13 13 13 13 1</td> <td>33 -</td> <td></td> <td></td> <td></td> <td></td> <td>329943111-144511122217104511288319977284529977284592728459284392250344228413737331121431980453333311124319214454284519805941241242845198059444552895194545111245459919214454528951945454511111111111111111111111111111</td>				257 (2000) 257 (2		2011 13 13 13 13 13 13 13 13 13 13 13 13 1	33 -					329943111-144511122217104511288319977284529977284592728459284392250344228413737331121431980453333311124319214454284519805941241242845198059444552895194545111245459919214454528951945454511111111111111111111111111111

1

Table 2 (cont)

																rau	nc.	וכ	cui	<i>u.</i>)														•	
														· · ·															-						
					,												~ <u></u> ,	. + 0	1 T																
									ι.								ي ي	sla	I T																
н	ĸL	FO	FC	AC	RC	×	ĸL	FO	F C	AC	80	ж	κt	FQ	FC	▲C	ыC	н	ĸL	+0	FC	▲ C	RC	н	ĸĿ	FO	FC	AC.	80	н	ĸL	FO	FC	▲ C	BC
						•		478	405	404	••		~ 4					,	3.6	134	104	103	11	0		793	744	-710	- 0 1			147	110		
10	- 5 5	280	139	-139	-9	ĭ		184	119	-118		10	0.4	234	256	-253		÷	3.6	106	38	37	10	1	8 6	182	203	200	33	í	;;	137	330	327	
11	55	240	172	-171	-18	÷	95	172	112	111	17	· •	1.4	85	131	-131	-7	10	3 6	178	48	45	17	2	8.6	239	230	-228	-24	;	3 3	473	511	505	23
12	55	286	250	-249	-28	3	95	82	196	-194	-33	;	1.5	659	629	-623	-86	ō	4 6	684	696	+690	-91	3	6.6	167	146	-145	-16	3	2,	238	190	187	31
ź	65	654	693	689	74		95	305	341	-339	-29	- Ā	16	249	165	-167	-17	- 4	4 6	180	164	181	30	4	8.6	188	309	305	- 44	- 4	27	162	98	97	11
3	65	52	12/	125	22	6	95	397	386	-384	+36	5	1 5	82	68	-61	-30	5	4 6	297	279	277	32	5	86	203	43	-42	-5	5	27	357	325	-320	-56
- 4	65	602	542	>39	6U	8		103	184	-183	-24	6	16	135	88	-88	0	7	4 0	80	43			6	86	391	336	333	44	7	27	96	70	-67	-19
5	65	581	560	->61	-77	9	95	147	43	-43	-4	7	1 5	328	339	337	31	8	4 6	305	594	267	31	1	96	219	104	101	25	Q	37	221	197	194	32
6	65	225	20	-19	٥	1	10 5	283	273	-2/2	-26	8	16	334	222	218	39		4 0	146	189	-168	-19	3	9.6	166	50	50	2	1	37	257	247	-245	- 31
. ?	6 5	52	212	211	59	2	10 5	166	224	-224	-7	10	1 5	184	188	186	26	10	4 6	30	155	-149	-42		96	154	126	124	23	2	37	200	148	-147	-17
	6 5	502	540	->3/	-60	3	10 5	275	325	355	49	11	1 5	195	190	-189	- 21	1		168	40	-37	-12	2		189	109	-103	- 35	3	37	366	304	-305	-33
. 9	6 5	418	400	397	47	4	10 5	258	107	-107	7	0	59	1003	960	954	108	5	2.0	747	782	-/76	-91	0	10 6	391	377	375	39	4	37	120	33	31	11
10		141	152	-180	-26	•	10 5	309	352	-347	-62	1	2.5	209	261	-259	-37	3		233	199	195	40	1	10 6	140	273	270	35	- 5	37	216	246	-244	-28
1	- 12	520	45/	-423	- 28	•	10 5	141	57	57		2	5.6	511	288	287	54		2.5	211	220	-222	-20	2	10 6	201		- 63	-25	- 7	37	141	42	- 42	
	- ; ?	240	120	119	12		10 2	238	254	252	29	3	2.9	68	209	208	25	2	5 6	321	304	+202	-57	1	. <i>i</i>	1/3	247	405	46	- 1	11	284	122	-121	-14
- 2			1.5	- 1 - 3	-13		11 2	100	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	11		2.5	401	224	-413				100	393	122	40		ů ź	307			30	3	24	187	103	-101	-18
;	- ; ;	400	405			- 1		137			13	•	÷ ?				- 3 5			259	219	215	41	-	ñ ź	243	230	-210	- 31	-	1.5	114	307	- 305	- 3 3
é	25	407	385	382	53	3	11 5	197	159	156	20	í.	54	365	213	.212	- 10	2	6 6	304	242	-239	- 39		0 7	290	261	256	47	ő	5 7	583	557	550	87
	8 5	178	241	-236	- 4 9		11 5	254	16		-16	5	24	27 8	215	212	38	3	6 6	122	162	160	42	7	07	490	424	-421	-52	ī	5 7	97	154	154	14
ž	8 5	177	227	227	17	5	11 5	106	24	•23		10	2 6	270	193	190	39	6	6 6	295	273	270	39	0	17	535	487	463	59	3	5 7	205	136	-130	- 42
3	85	234	264	262	34	0	0.6	356	420	-419	- 25	1	36	559	557	-552	-72	8		105	25	- 25	,	1	17	60	42	41	10	- Å	57	150	152	-147	-37
- 4	85	856	839	833	107	1	0 8	782	756	-751	-89	ž	3 6	245	155	154		9	6 6	251	87	-87	-22	2	17	198	124	123	12	1	67	148	190	-187	-32
5	85	250	15/	155	54	ž	0.6	367	399	393	69	3	3 5	452	450	446	56	2	76	388	423	420	53	3	17	346	333	-330	-45	2	67	236	105	105	3
	85	400	387	- 384	-50	3	06	474	579	-577	-57	4	3 5	419	477	-469	-84	3	76	249	314	312	41	4	17	323	298	-296	-36	0	77	77	85	83	18
,	8 5	188	192	-191	-17	•	06	323	360	- 354	-69	5	35	322	239	238	23	٥	7 6	134	173	172	17	5	17	75	133	-131	-24	1	77	336	66	-65	+7
10	85	169	119	-119	- 4	8	06	157	167	167	11	۵	3 5	150	179	178	15	8	10	99	110	-109	-15	6	17	315	307	-305	-31						

projection along the *b* axis of the molecules lying on the mirror plane y=0.25. All independent intermolecular distances which are nearly equal to or shorter than the sum of the corresponding van der Waals radii are given in the Figures (Pauling, 1960; r(N)=1.5, r(P)=1.9, r(Br)=1.95 Å).

It is interesting to note that in the crystal structure of $N_3P_3Cl_6$ (Wilson & Carroll, 1960) only the intermolecular distances of the type given in Fig. 2 are shorter than the corresponding van der Waals distances, whereas in the crystal structure of $N_3P_3F_6$ (Dougill, 1963) no short intermolecular distances occur.

The short distance $N(1)\cdots Br(1)$, shown in Fig. 2, is part of the approximately linear array $N(1)\cdots Br(1)-P(1)$. Likewise the short distance $Br(1)\cdots Br(2)$ is part of the linear array $Br(1)\cdots Br(2)-P(1,B)$. Such linear arrays have been observed in the crystal structures of polyhalogen compounds and have there been interpreted in terms of three-centre four-electron bonding (Wiebenga &

Fig.1. Projection of the crystal structure along the c axis. The molecules lie on mirror planes at y=0.25 and y=0.75. The rings of the molecules A and C are approximately at height z=0.5, and those of B and D approximately at height z=0. The short intermolecular distances are as follows: Br(3, A) \cdots Br(3, C[z+1]), 3.68 Å; Br(3, A) \cdots Br(4, D[z+1]), 3.81 Å; Br(3, A) \cdots Br(4, A[z+1]), 3.85 Å.

Kracht, 1969). A similar type of interaction may be present in the arrays $N(1)\cdots Br(1)-P(1)$ and $Br(1)\cdots Br(2)-P(1,B)$ of Fig. 2. It may be noted that these arrays are approximately perpendicular to each other; such a perpendicular orientation has also been observed with the polyhalogens.

As seen in Fig. 1, there is a short intermolecular distance $Br(3, A) \cdots Br(3, C[z+1])$, which is comparable in length to $Br(1) \cdots Br(2)$, Fig. 2. However, $Br(3, A) \cdots Br(3, C[z+1])$ is not part of a linear array of the type just considered: the angle P(2, A)-Br(3, A)-

Br(3, C[z+1]) is 141°. Also, in the crystal structure of N₄P₄Br₈ short Br...Br distances (3.66, 3.74 Å) are observed (Zoer & Wagner, to be published), that do not form linear arrays with a phosphorus atom.

The molecule N₃P₃Br₆ is shown in Fig. 3 and the bond lengths and valence angles, calculated from the mean atomic coordinates of I and II, are given in Table 4. The standard deviations in this Table were derived from the standard deviations in the mean coordinates $\sigma_m = \frac{1}{2} \{\sigma^2(I) + \sigma^2(II)\}^{1/2}$. For comparison Giglio & Puliti's results have been added to Table 4.

Table 3 (cont.)

Crystal II

Table 3 (cont.)

Crystal II

		κι	F0 F1		вC	н х	. Fo	FC	AC.	BC	н	ĸL	FO	FC	AC	8C	н	K L	FO	FC	10	er:		* 1	10							_	
																										70	•	80		10	÷t	AC.	65
	9 2	24	420 44	439	60	a 7	12	117	116	15	6	05	147	133	-133	-14	3	55	1142	1124	1119	112	8	06	184	147	147	45	3 7 5	320	309	306	41
	11 2	24	238 222	-221	-17	10 7	342	316	-314	-40	7	0 5	440	432	-430	-44	10	55	205	153	-153	-7	10	0.6	299	240	-237	-40	5 7 5	60	17	-15	.,
	13 2	4	97 18	-183	-23	12 7	311	325	321	56	ş	ŏŝ	763	788	-782	-95	12	55	2223	25/	-256	-17	12	16	197	135	-135	-4	675	187	161	160	16
	1 4	34	483 414	-412	+20	0 8	392	453	448	66	11	05	417	391	386	64	1	0 5	257	23	-21	10		1.6	127	158	-158	-15	0 0 6	769	759	-753	-96
5 5 4 1041 102 4 4 4 4 5 5 4 5 5 400 900 </td <td>33</td> <td>5 4</td> <td>769 790</td> <td>-/86</td> <td>-83</td> <td>3 8</td> <td>324</td> <td>302</td> <td>295</td> <td>65</td> <td>2</td> <td>15</td> <td>474</td> <td>459</td> <td>-455</td> <td>-55</td> <td>4</td> <td>65</td> <td>567</td> <td>552</td> <td>249</td> <td>. /6 6U</td> <td>6</td> <td>16</td> <td>136</td> <td>81</td> <td>- 75</td> <td>-30</td> <td>1 6 5</td> <td>232</td> <td>181</td> <td>179</td> <td>30</td>	33	5 4	769 790	-/86	-83	3 8	324	302	295	65	2	15	474	459	-455	-55	4	65	567	552	249	. /6 6U	6	16	136	81	- 75	-30	1 6 5	232	181	179	30
7 1 10 4 10 10 1 10	5 3	54	2018 1040	1041	102	4 8	4 96	17	17		3	1 5	458	469	-465	-64	5	6 5	609	568	- 263	-74	7	1.6	240	310	308	28	3 8 5	152	153	-152	-17
8 34 367 42 -50 -54 7 8 4 442 400 47 100 16 161 112 10 24 200 45 100 16 161 112 16 161 112 16 161 112 16 161 112 16 161 112 16 161 112 16 161 112 16 161 </td <td>73</td> <td>54</td> <td>404 428</td> <td>427</td> <td>24</td> <td>6 8</td> <td></td> <td>115</td> <td>115</td> <td>13</td> <td>5</td> <td>1 5</td> <td>197</td> <td>207</td> <td>207</td> <td>16</td> <td>á</td> <td>65</td> <td>520</td> <td>548</td> <td>->45</td> <td>- 60</td> <td>ş</td> <td>1 6</td> <td>139</td> <td>222</td> <td>219</td> <td>39</td> <td>4 8 5</td> <td>345</td> <td>323</td> <td>320</td> <td>45</td>	73	54	404 428	427	24	6 8		115	115	13	5	1 5	197	207	207	16	á	65	520	548	->45	- 60	ş	1 6	139	222	219	39	4 8 5	345	323	320	45
10 3.4 750 740 -750 740 -750 740 -750 740 10 1.4 10 10 1.4 10 10 1.4 10 10 1.4 10 10 1.4 10 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4 10 1.4	8 3	34	367 402	2 - 394	-54	7 8	149	94	-92	-16	6	15	301	304	297	62		6 5	419	412	409	47	10	16	161	172	170	24	2 9 5	178	43	43	3
12 3 510 46 76 10 8 10 10 1 200 219 218 15 0 7 8 7 8 7 8 7 8 7 7 7 7 7 7	10 3	5 4	750 76	-/54	-96	9 8	100	308	-303	-56	á	1 5	115	95	-95	-10	11	65	127	41	-105	-20	11	16	137	189	-188	-19	4 9 5	134	142	140	26
$ \begin{bmatrix} 1 & 4 & 1056 & 1002 & -706 & -86 & 12 & 6 & 4 & 266 & 269 & 260 & 40 & 12 & 15 & 5 & 10 & 7 & 5 & 10 & 7 & 5 & 26 & 10 & 7 & 5 & 26 & 260 & 260 & 260 & 260 & 260 & 270 & 260 & 270 & 260 & 270 & 260 & 270 &$	12 3		510 493	489	78	10 8	4 148	155	155	10	10	15	200	219	218	15	e.	75	94	.71	71	1	1	2.6	127	234	-232	-33	0 10 5	368	386	384	- 39
$ \begin{bmatrix} 1 & 4 & 2 & 0 & 0 & 0 & 0 & 3 & 4 & 2 & 9 & 4 & 0 & 1 & 0 & 13 & 0 & 0 & -14 & 13 & 15 & 10 & 12 & -14 & -16 $	Ģ	4	1056 100	-998	-80	12 8	269	293	290	40	12	15	175	65	-61	-23	ż	25	283	114	113	11	ŝ	26	207	274	2/2	26	1 10 6	278	270	268	34
$ \begin{array}{c} 1 & 4 & 234 \\ 4 & 4 & 234 \\ 5 & 307 \\ 4 & 4 & 234 \\ 5 & 307 \\ 1 & 4 & 9 \\ 4 & 4 & 235 \\ 4 & 4 & 4 & 235 \\ 4 & 4 & 4 & 4 & 4 & 4 \\ 4 & 4 & 4 & 4$	2		255 161	156	33	2 9	611	613 329	-609	-74	13	15	179	174	-174	-16	3	75	115	204	200	39	4	2.6	406	428	-424	-54	2 6 7	202	222	220	27
$ \begin{array}{c} \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{x} & \mathbf$	3 4		234 300	307	17	4 9	4 4 8 3	520	-516	-58	ž	2.5	72	204	-203	-10	7	75	663	684	-678	-93	6	26	431	447	-444	-54	4 0 7	178	175	-27	-30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			235 244	-241	-30		147	55	51	-20	3	25	389	419	-416	-50	\$	75	131	30	- 30	1	7	26	393	448	-444	-59	5 0 7	181	238	-237	-20
0 4 147 0.0	24	11	152 11	-113	13	29	20	17	16	- 5	5	2 5	374	325	-321	- 49	i	85	269	258	-253	-50	Ŷ	26	94	179	176	34	7 0 7	434	420	262	-51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			637 66:	-652	-69	\$ \$	260	241	-240	-23	ŝ	25	451	158	156	22	2	85	142	243	242	19	10	26	237	195	191	39	0 1 7	591	508	504	60
$\begin{array}{c} 13 & = 4 & -46 & -26 & -26 & -26 & -30 & -10 & -46 & $	10	11	45 162	-150	-2/	10 9	91	129	129	11		2.5	218	278	277	25	4	8.5	823	621	814	103	2	3 6	58	158	158	12	3 1 7	290	340	-338	-45
$ \begin{array}{c} 14 & 4 & 24 & 26 & 26 & 26 & 46 & 1.10 & 5 & 56 & 111 & 106 & 136 & 111 & 106 & -13 & 12 & 25 & 21 & 14 & 110 & 20 & 13 & 101 & 10 & 106 & 10 & 102 & 10 & 102 & 20 & 11 & 100 & 106 & 110 & 106 & 120 & 106 & 100 & 1$	13 4		454 420	y 353	30	0 10	866	825	818	109	11	2.5	300	286	284	33	ů	• •	649	650	+ 373	-40	3	36	510	444	440	55	4 1 7	264	298	-295	-39
$ \begin{array}{c} 2 & 5 & 5 & 5 \\ 3 & 5 & 5 & 5 & 5 \\ 3 & 5 & 5 & 5 \\ 3 & 5 & 5 & 5 \\ 3 & 5 & 5 & 5 \\ 3 & 5 & 5 & 5 \\ 3 & 5 & 5 & 5 \\ 3 & 5 & 5 & 5 \\ 3 & 5 & 5 & 5 \\ 3 & 5 & 5 & 5 \\ 4 & 5 & 5 \\ 4 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 &$	14		244 200	254	48	1 10	150	111	-104	-35	12	25	213	194	192	29	1	95	37	119	-118	-10	5	3 6	235	257	255	26	7 1 7	336	329	326	42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 5		557 54	240	51	3 10	628	588	586	40	ĭ	3 5	544	526	-522	-62	3	¥ 5	281	213	-210	-35	2	36	161	105	106	12	2 2 7	213	521	516	74
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3		122 240	245	-47	4 10	4 316	262	-259	-36	2	35	. 301	308	-304	-45	4	95	369	338	- 330	-30		36	57	6	1		5 2 7	371	321	+316	-55
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 5	4	370 351	346	62	6 10	290	330	327	40	š	3 5	138	50	-48	15	6	\$ 5	413	376	- 374	-30	10	4 6	702	709	-703	-92	0 3 7	107	190	-47	-15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ý .		127 11	-117	-12	6 10	4 34	363	-323	-34	2	35	577 950	553	545	91 121	7	95	209	243	241	31	3	4 6	75	124	124	-6	1 3 7	300	246	-244	- 32
10 9 9 9 10 7 10 9 90 100 700 100 700 100 700 100 700 100 700 100 700	10	4	636 611	-013	-90	10 10 .	201	93	88	29	8	3 5	197	154	151	29	9	9 5	46	55	-55		ź	4 6	102	52	-52	4	3 3 7	352	298	-141	-17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0 6		1763 171	1/36	182	2 11	112	83	-81	-17	10	35	251	258	+255	-42	2 1	05	298	28/	-285	-20	10	4 6	166	247	246	29	4 3 7	134	45	43	14
5 0 4 365 354 -77 012 4 128 250 40 -288 -39 22 40 578 -59 410 5 41 10	1 1	4	394 33	-331	-33	3 11	373	360	-358	-37	11	3 5	271	222	221	24	3 1	05	298	310	312	40	2	5 6	782	792	-786	-93	6 3 7	111	136	134	21
4 6 4 65 05 -053 -77 0 12 4 12 8 224 -223 -24 3 4 5 275 225 -233 -31 7 10 5 336 25 250 31 5 5 6 951 953 -550 -55 5 5 4 7 555 131 326 25 0 6 4 65 055 334 331 42 21 6 4 224 267 -224 -38 4 5 10 131 177 33 0 115 171 23 19 13 7 5 6 163 29 24 17 6 47 155 311 326 45 0 6 4 65 054 331 -42 21 2 2 134 -153 -25 5 4 5 673 64 668 69 1115 80 88 63 12 8 5 6 643 446 413 51 0 57 518 526 510 45 0 6 4 45 4 57 397 -54 4 5 12 124 45 12 124 145 12 12 134 -153 -25 5 4 5 673 64 668 69 1115 80 88 83 83 12 8 5 6 163 20 24 17 0 47 126 133 125 14 9 6 4 45 4 57 397 -54 4 5 12 124 45 19 10 -15 -1 6 4 3 320 10 10 10 10 10 10 10 10 10 10 10 10 10	3 6	4	360 331	304	52	7 11	32	268	-256	-39	2	43	184	176	-176	-2	31	35	341	104 350	-104	-01	4	56	139	196	192	-54	1 4 7	200	122	-121	-14
6 0 4 453 459 -266 47 286 185 4 52 154 -52 154 -53 5 4 5 4 5 20 104 104 10 30 011 5 126 5 3 17 13 7 5 6 168 29 24 17 6 47 286 185 183 30 7 8 4 112 26 17 -22 4 12 146 138 25 7 4 5 131 64 10 30 111 5 116 30 111 5 126 19 26 143 11 0 57 516 526 519 66 7 8 4 127 397 -354 -457 512 4 99 116 -115 -11 8 4 5 22 190 15 24 99 24 10 9 5 6 433 413 318 44 1 5 7 66 133 152 14 7 8 4 15 54 97 21 21 2 6 12 4 99 116 -115 -11 8 4 5 22 190 15 51 5 24 99 24 9 5 6 433 413 318 44 1 5 7 66 133 152 14 10 8 4 65 40 5 40 -51 24 99 116 -11 9 10 42 42 4 10 8 4 65 40 5 40 5 43 64 133 64 113 4 84 159 199 9 12 4 5 247 244 -23 -23 21 25 218 218 -212 -41 1 2 6 6 20 129 -20 -23 4 5 7 129 144 -12 1 2 16 4 -159 -30 11 8 4 55 50 50 -9 -9 2 13 4 307 387 -533 -55 0 5 3 356 361 361 -361 -361 -361 -361 -361 -361	4 0		654 650	-055	-//	0 12	4 178	224	-223	-24	3	4 5	275	225	-553	-31	7.1	0 5	336	252	250	31	5	5 6	551	563	-580	-59	5 4 7	355	331	328	43
7 0 4 14 20 37 -22 412 4 152 140 118 20 7 43 183 183 -182 -192 192 194 297 293 49 9 56 169 341 318 44 557 68 193 152 14 0 5 4 477 397 -354 -44 5 52 4 99 116 -116 -11 6 45 720 199 199 5 3 115 294 297 293 49 9 56 160 218 299 41 257 196 42 42 4 9 5 4 197 233 -224 12 12 6 12 4 45 40 9 43 61 9 43 513 554 -550 -55 4115 217 20 -10 -17 2 66 205 266 -263 -46 3 57 215 112 -126 -41 10 4 465 430 433 -65 116 116 116 119 12 45 247 264 -233 -23 212 512 20 -10 -17 2 66 205 266 -263 -46 3 57 215 112 -126 -41 11 6 4 465 430 -433 -65 113 4 84 156 9 12 45 247 264 -233 -23 212 52 10 216 -212 -45 3 66 251 159 43 4 57 125 112 -126 -41 11 6 4 465 620 619 100 1 6 518 398 -133 -35 1 53 359 354 -351 -350 10 3 339 54 -56 1 -26 4 66 100 50 59 49 5 1 6 7 200 186 -163 -33 2 7 4 66 620 619 100 1 10 5 150 398 -133 -35 1 5 5 220 286 -211 -54 2 0 6 375 956 -454 -26 4 6 6 100 50 59 49 5 1 6 7 200 186 -163 -33 3 7 4 572 653 -979 -71 2 0 5 310 299 -290 -73 3 5 5 202 286 -211 -54 2 0 6 371 591 -966 -80 6 6 100 29 -90 -23 4 7 4 572 639 -999 -71 2 0 5 310 299 -290 -73 3 5 5 202 286 -211 -54 2 0 6 371 591 -966 -80 6 100 29 -90 -23 4 7 4 572 649 -494 -73 3 0 5 5 33 0 299 -290 -73 3 5 5 202 280 -211 -54 0 6 371 591 -966 -80 6 6 100 29 -90 -23 4 7 4 572 639 -999 -71 2 0 5 310 299 -290 -73 3 5 5 202 280 -211 -54 0 6 371 591 -966 -80 6 6 100 29 -90 -23 4 7 4 572 649 -494 -73 3 0 5 5 330 299 -290 -73 3 5 5 202 280 -211 -54 0 6 571 591 -966 -80 6 6 100 29 -90 -23 4 7 4 572 649 -494 -73 3 0 5 5 330 299 -290 -73 3 5 5 202 280 -211 -54 0 6 571 591 -966 -80 6 6 100 29 -90 -23 4 7 4 572 649 -494 -73 3 0 5 5 330 299 -290 -73 3 5 5 202 280 -211 -54 0 6 571 591 -966 -80 6 6 100 29 -90 -23 4 7 4 572 649 -494 -73 3 0 5 5 330 299 -290 -73 3 5 5 202 222 210 177 30 1 7 6 208 180 -130 -139	6	4	403 411	-410	- 47	3 12	21	154	-154	- 2	5	4.5	670	674	668	69	1 1	1.5	89	84	83	12	é	56	168	416	413	17	6 4 7	258	185	183	30
9 0 4 197 219 212 12 6 12 4 45 40 40 4 1 9 4 5 513 554 -555 -55 4 115 527 20 -10 -17 -7 0 6 205 526 526 724 4 2 4 4 4 2 4 4 1 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 6	4	134 20	- 194	-22	4 12	153	140	138	20	7	12	183	163	-162	-12	21	15	294	29/	293	47	?	56	369	341	338	44	1 5 7	66	153	152	14
10 6 4 605 406 540 - 50 403 64 113 4 64 159 129 9 12 4 5 247 264 - 233 - 23 2 12 5 218 210 - 212 - 41 3 6 6 251 165 159 43 4 5 7 129 144 - 159 - 3 13 6 4 145 243 - 24 5 243 - 24 134 307 356 - 55 0 5 3 354 361 - 361 - 16 0 0 6 394 452 - 452 - 27 4 6 5 108 50 49 5 1 6 7 200 186 - 138 - 33 13 6 4 145 243 - 24 3 - 6 4 13 4 130 186 133 35 1 5 3 492 536 351 - 72 1 0 6 735 756 - 751 - 86 5 6 6 210 77 - 77 - 5 4 6 7 152 158 157 13 2 7 4 56 6 22 619 100 1 0 5 352 374 373 21 2 5 7 75 725 + 721 - 82 2 6 6 30 1396 390 69 6 6 6 312 286 266 41 67 152 158 157 13 3 7 4 572 635 - 549 - 434 - 73 3 1 5 5 33 257 - 33 5 5 7 22 2 36 - 241 - 54 3 0 6 571 581 - 368 9 6 6 100 92 - 90 - 23 4 7 4 572 637 - 549 - 748 - 73 3 1 5 5 32 374 4 5 3 393 397 397 357 5 5 0 6 252 140 - 73 3 - 5 7 20 - 23 4 7 4 572 639 - 549 - 748 - 73 3 1 5 5 330 - 630 - 73 3 5 5 222 236 - 241 - 54 3 0 6 571 581 - 368 9 6 6 100 92 - 90 - 23 4 7 4 572 637 - 549 - 648 - 73 3 1 5 5 330 299 - 280 - 73 3 5 5 222 236 - 241 - 54 3 0 6 571 581 - 368 9 6 6 100 92 - 90 - 23 4 7 4 572 639 - 434 - 74 3 7 5 5 0 5 330 299 - 280 - 73 3 5 5 222 236 - 241 - 54 3 0 6 571 581 - 368 9 6 6 100 92 - 90 - 23 4 7 4 572 637 - 449 - 748 - 75 3 1 5 5 330 299 - 280 - 73 3 5 5 222 236 - 241 - 54 3 0 6 571 581 - 368 9 6 6 100 92 - 90 - 23 4 7 4 572 639 - 434 - 74 3 7 15 5 133 630 - 630 - 73 4 5 5 397 30 7 30 7 5 5 0 6 222 21 150 - 73 1 5 6 20 150 - 35 - 350 - 3	9 6	4	197 .21.	212	12	6 12	4 44	409	404	61	ě	4.5	513	554	-550	- e5	4 1	15	217	20	-10	-17	2.	6 6	205	266	-263	-40	3 5 7	215	42	+126	-41
13 64 145 243 -44 5 - 243 -6 4 13 4 160 166 153 15 1 5 3 442 556 -511 -52 1 0 6 735 756 -751 -56 5 6 6 210 37 -57 5 1 6 7 200 186 -183 -33 2 7 4 66 629 619 100 1 0 5 352 374 373 21 2 5 7 757 725 -721 -52 2 6 6 351 360 390 69 6 6 312 268 266 4 6 7 152 158 157 13 3 7 4 572 653 -599 -71 2 0 5 310 299 -290 -73 3 5 5 220 286 -731 -54 3 0 6 571 591 -566 -58 9 6 6 100 92 -90 -23 4 7 4 572 653 499 -494 -73 3 0 5 533 635 -630 -73 4 5 5 397 397 397 397 397 5 5 0 6 252 160 177 30 1 7 6 208 188 -139	10 0	4	405 404	403	-54	1 13	4 101	159	129	-56	12	45	247	264	-243	-23	21	25	218	210	-212	-41	3	6 6	251	165	159	43	4 5 7	129	164	-159	-39
2 / 4 606 627 819 100 1 0 5 32 3/4 3/3 21 2 5 5 73 723 -721 -82 2 6 8 351 366 390 69 6 6 6 312 288 286 41 3 7 4 572 603 -999 -71 2 0 5 310 299 -290 -73 3 5 5 22C 296 -291 -54 3 0 6 571 591 -588 9 6 6 100 92 -90 -23 4 7 4 572 649 -464 -73 3 0 5 633 635 -630 -73 4 5 5 397 307 397 25 5 0 6 222 180 177 30 1 7 6 208 138 -136 -19	13 4	•	145 24	-243	-0	4 13	180	186	153	35	ĭ	5 3	492	536	-531	- 72	ĩ	0.6	735	756	-/51	-80	5	6 6	210	22	- 77	.;	4 6 7	152	158	-183	-33
4 7 4 565 48V -484 -73 3 0 5 533 635 -630 -73 4 5 5 393 307 307 25 5 0 6 222 180 177 30 1 7 6 208 138 -136 -19	3 7		572 603	, aly , ., ., ., ., .,	-71	2 0	5 352 5 310	299	-290	-73	23	55	735	725	-721	- 82	2	06	361 571	396 591	590 880-	69 •58	ŝ	6 6	312	288	266	41				-	
	4 2	7.4	565 481	-484	-75	3 0	5 63	635	-630	-73	1	5.5	393	397	397	25	5	0 6	222	180	177	30	1	7 6	208	138	-136	-19					

The P-Br bonds (mean value 2.162 Å) are equal within experimental error, as well as the angles Br-P-Br (mean $102\cdot1^{\circ}$). Within the (N-P)₃ ring no significant differences are found between the P-N bonds (mean 1.576 Å), or between the angles N-P-N (mean 118.5°). However, there is a small, but significant, difference (3°) between the two independent angles P-N-P (119.3 and 122.4°). The smaller value of the angle P(2)-N(1)-P(2'), as compared with the angle P(2)-N(2)-P(1), together with the differences in the P-N bonds and the angles N-P-N (though the latter differences are not significant) describe a slight deformation of the six-membered ring of a type consistent with the bonding interaction, discussed above, between the nitrogen atom N(1) and the group P(1)-Br(1) of a second molecule

The $(N-P)_3$ ring is not entirely planar. The dihedral angles assignable to the P-N bonds are: -6.7° for N(1)-P(2), 6.3° for P(2)-N(2) and -5.5° for N(2)-P(1), indicating a slight chair-shaped conformation. The best plane through the six ring atoms, the phosphorus atoms having a weight four times that of the nitrogen atoms, is given by the equation

-0.3958 X + 0.9183 Z = 2.836 (X and Z in Å).

The distances from the ring atoms to this plane and their standard deviations are $\Delta N(1) = -0.047$ (0.011), $\Delta P(2) = 0.011$ (0.003), $\Delta N(2) = -0.035$ (0.008) and $\Delta P(1) = 0.008$ (0.004) Å. The χ^2 test (Cruickshank & Robertson, 1953) on the planarity of the ring yielded $\chi^2 = 9990$ and P < 0.001 for n = 6.

In the crystal structures of the related compounds $N_3P_3Cl_6$, $N_3P_3Cl_5F$ (Olthof, 1969) and $N_3P_3F_6$ the

 $(N-P)_3$ ring has been found to be planar within experimental error. The departure from planarity in the case of $N_3P_3Br_6$ is most likely due to intermolecular steric interactions, though the non-planarity is not apparent from the short intermolecular contacts, presented in Fig. 1 and 2.

The authors are indebted to Professor Aafje Vos for valuable discussions and to Mr F. van Bolhuis for assistance in operating the Nonius diffractometer.

Fig.2. Projection along the *b* axis of the molecules lying on the mirror plane y=0.25 and short intermolecular distances in this plane.

	Presen	t work	Giglio & F	uliti (1967)
N(1) - P(2)	1·588 Å	0·006 Å	1·55 Å	0∙035 Å
N(2) - P(1)	1.565	0.008	1.60	0.033
N(2) - P(2)	1.575	0.008	1.60	0.045
P(1) - Br(1)	2.165	0.004	2.20	0.011
P(1) - Br(2)	2.158	0.004	2.17	0.017
P(2) - Br(3)	2.168	0.003	2.20	0.019
P(2) - Br(4)	2.159	0.003	2.14	0.013
		a	10(0)	• • • •
P(2) - N(1) - P(2')	119·3°	0.6°	126.8	2.6
P(2) - N(2) - P(1)	122.4	0.5	118.6	2•4
N(2) - P(1) - N(2')	117.4	0.6	118.3	1.8
N(1) - P(2) - N(2)	119.0	0.4	115.8	2.0
Br(1)-P(1)-Br(2)	102.1	0.1	101.7	0.4
Br(3)-P(2)-Br(4)	102.0	0.1	103.4	0.4
N(1) - P(2) - Br(3)	106.9	0.2	106.7	2.4
N(1) - P(2) - Br(4)	108.7	0.4	111.9	1.7
N(2) - P(2) - Br(3)	109-3	0.4	114.4	1.8
N(2) - P(2) - Br(4)	109.7	0.4	104.0	1.8
N(2) - P(1) - Br(1)	109.1	0.4	113.4	1.7
N(2) - P(1) - Br(2)	109.0	0.4	103.8	2.1

Table 4.	Bond	lengths	and val	'ence angl	es with	ı standar	d deviations

Fig. 3. Molecule N₃P₃Br₆.

References

BUSING, W. R. & LEVY, H. A. (1957). Acta Cryst. 10, 180.

COXON, G. E., SOWERBY, D. B. & TRANTER, G. C. (1965). J. Chem. Soc. p. 5697.

- CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953). Acta Cryst. 6, 698.
- CRUICKSHANK, D. W. J. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.
- DOUGILL, M. W. (1963). J. Chem. Soc. p. 3211.
- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A 24, 390.
- GIGLIO, E. & PULITI, R. (1967). Acta Cryst. 22, 304.
- HAZEKAMP, R., MIGCHELSEN, T. & Vos, A. (1962). Acta Cryst. 15, 539.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- McGeachin, H. McD. & TROMANS, F. R. (1961). J. Chem. Soc. p. 4777.
- OLTHOF, R. (1969). Acta Cryst. B25, 2040.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- SCHLUETER, A. W. & JACOBSON, R. A. (1968). J. Chem. Soc. A, p. 2317.
- WAGNER, A. J. & Vos, A. (1968). Acta Cryst. B24, 707.
- WIEBENGA, E. H. & KRACHT, D. (1969). Inorg. Chem. 8, 738.

WILSON, A. & CARROLL, D. F. (1960). J. Chem. Soc. p. 2548.

- ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558.
- ZACHARIASEN, W. H. (1968). Acta Cryst. A 24, 212.